[1] Major low-angle normal faults juxtapose different structural levels of the crust that record both brittle and ductile deformation. Field relationships alone cannot establish whether these different responses to deformation represent (1) parts of a single process of exhumation along the detachment or (2) two separate events, with the later, more discrete brittle detachment exhuming a fossil ductile shear zone from depth. These two general models are critically assessed for the lowangle normal Simplon Fault Zone (SFZ) in the central Alps. The SFZ shows a spatial transition from a broad ductile mylonitic shear zone to a discrete brittle detachment with identical kinematics. The age of the ductile shear zone and ductile-brittle transition is controversial. We present a detailed geochronological study based on fission track, 40 Ar/ 39 Ar, and Rb/Sr microsampling dating, coupled with structural, petrological, and chemical analyses that provides tight constraints on SFZ timing. Discontinuous mineral cooling ages over a broad range of temperatures across the fault zone argue for fault activity between 20 and 3 Ma. On the basis of synkinematic white mica in low-temperature shear zones and necks of foliation boudinage, the brittle-ductile transition in the footwall could be dated at ∼14.5-10 Ma. Overall, the data presented here are consistent with a continuous transition from ductile shearing to a more localized zone of brittle deformation within the same geological framework, over a period of ∼15 Ma. The SFZ is therefore an example of a telescoped crustal section within a single major lowangle fault, involving a continuous period of exhumation rather than a two-stage structure.