The Mg/Al composite plate was developed in aerospace and other fields. At present, through the corrugated rolling method, the bonding strength of Mg/Al composite plate could be increased and the warpage could be reduced. However, this still requires the straightening process to reach the parameters’ range. In this work, the original interface morphology of Mg/Al corrugated composite plate was obtained by experimental characterization. Based on the principle of elastoplastic mechanics, the equations of straightener parameters and straightening process parameters were obtained and the influencing factors were deduced. So, the straightening model was established in an Abaqus. The effects of straightener parameters and straightening process parameters on the interface morphology were analyzed and the interface morphology was expressed by amplitude and period length of the equation. The results showed that bending moment, shear strength and the reduction of second roll played roles on the interface morphology. After the first straightening unit, the amplitude increased by 1.1% and the period length increased by 3%. Finally, a complete straightening parameter was designed, which included straightener parameters, straightening process parameters and straightening temperature. The aim of this work was to provide a theoretical basis for establishing a high precision Mg/Al corrugated composite plate straightening model, which could improve the bonding strength while ensuring the straightening effect.