Cryopreservation has utility in clinical and scientific research but implementation is highly complex and includes labor-intensive cell-specific protocols for the addition/removal of cryoprotective agents and freeze-thaw cycles. Microfluidic platforms can revolutionize cryopreservation by providing new tools to manipulate and screen cells at micro/nano scales, which are presently difficult or impossible with conventional bulk approaches. This review describes applications of microfluidic chips in cell manipulation, cryoprotective agent exposure, programmed freezing/thawing, vitrification, and in situ assessment in cryopreservation, and discusses achievements and challenges, providing perspectives for future development.