Various docetaxel (DTX)-loaded nanoparticle delivery systems have been designed to enhance the solubility and pharmacological e®ects of DTX. However, the toxicity changes of these nano-modi¯ed DTX (nano-DTX) are not yet clear enough. Herein, to compare the reproductive toxicity between conventional DTX and nano-DTX, we performed sperm toxicity test in mice, and fertility and early embryo-fetal developmental toxicity test in rats. It was found that DTX severely repressed spermatogenesis and sperm motility, and dramatically increased sperm abnormality in mice and rats. Moreover, DTX signi¯cantly decreased copulation, conception and fertility indexes in rats, and no positive pregnant female rat was obtained after treatment with DTX. However, nano-DTX signi¯cantly reduced DTX-induced toxicity to sperm. Most importantly, nano-DTX obviously converted DTX-induced fertility and early embryo-fetal developmental toxicity. Furthermore, organ weights and histopathology examination revealed DTX, but not nano-DTX, signi¯cantly decreased testis and epididymis weights, and induced obvious histopathological atrophy of testes and epididymides in rats. Further studies indicated that changed activity of lactate dehydrogenase C4 (LDH-C4) in rodents testes was mainly responsible for the above observations. These results strongly support the idea that DTX-loaded nanoformulations have the potential to overcome the reproductive toxicity of DTX.