We use narrow-band laser excitation of Yb atoms to substantially enhance the brightness of a cold beam of YbOH, a polyatomic molecule with high sensitivity to physics beyond the standard model (BSM). By exciting atomic Yb to the metastable 3 P 1 state in a cryogenic environment, we significantly increase the chemical reaction cross-section for collisions of Yb with reactants. We characterize the dependence of the enhancement on the properties of the laser light, and study the final state distribution of the YbOH products. The resulting bright, cold YbOH beam can be used to increase the statistical sensitivity in searches for new physics utilizing YbOH, such as electron electric dipole moment and nuclear magnetic quadrupole moment experiments. We also perform new quantum chemical calculations that confirm the enhanced reactivity observed in our experiment and compare reaction pathways of Yb( 3 P) with the reactants H 2 O and H 2 O 2 . More generally, our work presents a broad approach for improving experiments that use cryogenic molecular beams for laser cooling and precision measurement searches of BSM physics.