Doppler and Sisyphus cooling of 174 YbOH are achieved and studied. This polyatomic molecule has high sensitivity to physics beyond the Standard Model and represents a new class of species for future high-precision probes of new T-violating physics. The transverse temperature of the YbOH beam is reduced by nearly two orders of magnitude to < 600 μK and the phase-space density is increased by a factor of > 6 via Sisyphus cooling. We develop a full numerical model of the laser cooling of YbOH and find excellent agreement with the data. We project that laser cooling and magneto-optical trapping of long-lived samples of YbOH molecules are within reach and these will allow a high sensitivity probe of the electric dipole moment of the electron. The approach demonstrated here is easily generalized to other isotopologues of YbOH that have enhanced sensitivity to other symmetryviolating electromagnetic moments.
Vibrational overtones in deeply bound molecules are sensitive probes for variation of the proton-to-electron mass ratio µ. In nonpolar molecules, these overtones may be driven as two-photon transitions. Here, we present procedures for experiments with O + 2 , including state-preparation through photoionization, a two-photon probe, and detection. We calculate transition dipole moments between all X 2 Π g vibrational levels and those of the A 2 Π u excited electronic state. Using these dipole moments, we calculate two-photon transition rates and AC-Stark-shift systematics for the overtones. We estimate other systematic effects and statistical precision. Two-photon vibrational transitions in O + 2 provide multiple routes to improved searches for µ variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.