Determination of nucleic acid (NA) structure with NMR spectroscopy is limited by the lack of restraints on conformation of NA phosphate. In this work, the (31)P chemical shielding tensor, the Γ(P,C5'H5'1) and Γ(P,C5'H5'2) cross-correlated relaxation rates, and the (2)J(P,C3'), (2)J(P,C5'), and (3)J(P,C4') coupling constants were calculated in dependence on NA backbone torsion angles ζ and α. While the orientation of the (31)P chemical shielding tensor was almost independent of the NA phosphate conformation, the principal tensor components varied by up to ~40 ppm. This variation and the dependence of the phosphate geometry on torsion angles ζ and α had only a minor influence on the calculated Γ(P,C5'H5'1) and Γ(P,C5'H5'2) cross-correlated relaxation rates, and therefore, the so-called rigid tensor approximation was here validated. For the first time, the (2)J(P,C) spin-spin coupling constants were correlated with the conformation of NA phosphate. Although each of the two J-couplings was significantly modulated by both torsions ζ and α, the (2)J(P,C3') coupling could be structurally assigned to torsion ζ and the (2)J(P,C5') coupling to torsion α. We propose qualitative rules for their structural interpretation as loose restraints on torsion angles ζ and α. The (3)J(P,C4') coupling assigned to torsion angle β was found dependent also on torsions ζ and α, implying that the uncertainty in determination of β with standard Karplus curves could be as large as ~25°. The calculations provided a unified picture of NMR parameters applicable for the determination of NA phosphate conformation.