The protozoan parasite Giardia intestinalis belongs to one of the earliest diverged eukaryotic lineages. This is also reflected in a simple intracellular organization, as Giardia lacks common subcellular compartments such as mitochondria, peroxisomes, and apparently also a Golgi apparatus. During encystation, developmentally regulated formation of large secretory compartments containing cyst wall material occurs. Despite the lack of any morphological similarities, these encystation-specific vesicles (ESVs) show several biochemical characteristics of maturing Golgi cisternae. Previous studies suggested that Golgi structure and function are induced only during encystation in Giardia, giving rise to the hypothesis that ESVs, as a Giardia Golgi equivalent, are generated de novo. Alternatively, ESV compartments could be built on the template structure of a cryptic Golgi in trophozoites in response to ER export of cyst wall material during encystation. We addressed this question by defining the molecular framework of the Giardia secretory apparatus using a comparative genomic approach. Analysis of the corresponding transcriptome during growth and encystation revealed surprisingly little stage-specific regulation. A panel of antibodies was generated against selected marker proteins to investigate the developmental dynamics of the endomembrane system. We show evidence that Giardia accommodates the export of large amounts of cyst wall material through re-organization of membrane compartment(s) in trophozoites with biochemical similarities to ESVs. This suggests that ESVs are selectively stabilized Golgi-like compartments in a unique and archetypical secretory system, which arise from a structural template in trophozoites rather than being generated de novo.
The search for novel therapeutic options to cure alveolar echinococcosis (AE), due to the metacestode of Echinococcus multilocularis, is ongoing, and these developments could also have a profound impact on the treatment of cystic echinococcosis (CE), caused by the closely related Echinococcus granulosus s.l. Several options are being explored. A viable strategy for the identification of novel chemotherapeutically valuable compounds includes whole-organism drug screening, employing large-scale in vitro metacestode cultures and, upon identification of promising compounds, verification of drug efficacy in small laboratory animals. Clearly, the current focus is targeted towards broad-spectrum anti-parasitic or anti-cancer drugs and compound classes that are already marketed, or that are in development for other applications. The availability of comprehensive Echinococcus genome information and gene expression data, as well as significant progress on the molecular level, has now opened the door for a more targeted drug discovery approach, which allows exploitation of defined pathways and enzymes that are essential for the parasite. In addition, current in vitro and in vivo models that are used to assess drug efficacy should be optimized and complemented by methods that give more detailed information on the host-parasite interactions that occur during drug treatments. The key to success is to identify, target and exploit those parasite molecules that orchestrate activities essential to parasite survival.
A survey was carried out in Bulgaria to determine the presence of free-living amoebae (FLA) from environmental sources. In 171 (61.1%) of 280 samples, isolates of Acanthamoeba with group II or III morphology, as well as Hartmannella spp. were recovered. Five isolates named "6" (artificial lake), Ep (lake), G2 (soil), R4* (river) and PK (spring water)--all exhibiting a highly efficient proliferation in axenic cultures--were subsequently cloned and subjected to molecular analyses for identification and genotyping In accordance with morphological findings, PCR-based analyses identified four isolates (6, Ep, G2, R4*) belonging to the genus Acanthamoeba. Confirmation of these findings was obtained by phylogenetic analysis using partial sequencing of the 18S rDNA (ASA.S1) Acanthamoeba-gene. Comparison of these sequences with corresponding regions from other Acanthamoeba strains available from GenBank sorted all four isolates into the sequence type group T4 that contains most of the pathogenic Acanthamoeba strains already identified. The fifth isolate (PK) exhibited morphological characteristics matching those of Hartmannella, and scored negative in the Naegleria fowleri and Acanthamoeba PCRs.
Two cats with Leishmania species infections were investigated. The first had been imported from Spain with a non-healing, ulcerated nodule on a hindleg. The presence of Leishmania species was detected by histopathology and pcr on samples of skin. The lesion was unresponsive to treatment with allopurinol for three months but the cat was treated successfully by removing the lesion surgically. The second cat had lived in both Spain and Switzerland, and had a history of recurrent skin lesions on its head and neck. A diagnosis of pemphigus foliaceus was made on the basis of histopathology, but Leishmania species serology (elisa) and pcr of skin were positive, leading to a diagnosis of a Leishmania species infection combined with pemphigus foliaceus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.