This work illustrates examples of metal-organic frameworks (MOFs) derived from transition metals and their environmental applications in areas of catalysis, sorption, and hydrogen evolution. Explanation of some of the techniques employed for their synthesis has been discussed. On the other hand, the advantages of the use of hybrid materials such as the metal-organic frameworks are exposed in this book as well a detailed description of the different linkers and metals used for the synthesis of this kind of porous materials going through the methodologies and techniques utilized by different authors to obtain good-quality crystalline applicable materials. Adjustments of linker geometry, length, ratio, and the functional group can tune the size, shape, and internal surface property of an MOF for a targeted application. The uses of MOFs are exploring new different areas of chemistry such as catalysis, adsorption, carrier systems, hydrogen evolution, photocatalysis, and more. Different examples of MOFs from Scandium to Zinc are well described in this book, and finally, a brief description of some common environmental applications such as metals and azo dyes sorption, hydrogen evolution, and catalyst in the transesterification process of vegetable oils to produce biodiesel is explored and commented.