1987
DOI: 10.2307/2273836
|View full text |Cite
|
Sign up to set email alerts
|

Théories d'algèbres de Boole munies d'idéaux distingués. I: Théories élémentaires

Abstract: Une conséquence de la classification des théories complètes d'algèbres de Boole par Tarski [5] est que la théorie élémentaire d'une algèbre de Boole A est déterminée par le type d'isomorphisme du treillis de ses idéaux définissables et, pour chacun de ces idéaux, par le nombre d'atomes du quotient de A par cet idéal lorsque ce nombre est fini. Une remarque analogue peut être faite à propos des cas particuliers d'algèbres de Boole munies d'un idéal distingué étudiés par Ershov [1] et par Jurie et Touraille [3];… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
7
0

Year Published

1995
1995
2012
2012

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 12 publications
(7 citation statements)
references
References 2 publications
0
7
0
Order By: Relevance
“…We call D‐system a family S = ( I d ) d ∈ D such that I 1 is a Boolean algebra, and I d is an ideal of I 1 for every d ∈ D , d > 1. These objects have been studied under various names, cf., e.g., 12, 18 and 19.…”
Section: Varieties and D‐systemsmentioning
confidence: 99%
See 4 more Smart Citations
“…We call D‐system a family S = ( I d ) d ∈ D such that I 1 is a Boolean algebra, and I d is an ideal of I 1 for every d ∈ D , d > 1. These objects have been studied under various names, cf., e.g., 12, 18 and 19.…”
Section: Varieties and D‐systemsmentioning
confidence: 99%
“…The classification of Boolean algebras up to elementary equivalence was achieved by Tarski, who gives explicit elementary invariants for each possible first order theory. Starting from this, several papers like 12, 16, 18 and 19 focus on Boolean algebras with additional structure, more precisely, Boolean algebras with a finite set of unary predicates, to be interpreted as ideals. It is interesting to note that, although the theory of Boolean algebras with one unary predicate (to be interpreted as an arbitrary subset) is undecidable, 16 shows that the theory of Boolean algebras with several unary predicates, all of which interpreted as ideals, is decidable.…”
Section: On Touraille Invariantsmentioning
confidence: 99%
See 3 more Smart Citations