La première partie de cet article ([10], que nous désignerons par (I) dans la suite) était consacrée à la théorie élémentaire TX des algèbres de Boole munies d'idéaux distingués indéxés dans un ensemble X. On a vu que les idéaux définissables dans un modèle de Tx forment la sous-algèbre engendrée par les idéaux distingués de l'algèbre de Heyting des idéaux de munie de l'opérateur sa défini par sa(K) = {a: a/K est sans atome}, et que la théorie de peut être caractérisée par la structure composée de l'algèbre de Heyting des idéaux définissables munie de l'opérateur sa et des idéaux distingués, et par l'application qui à tout K de fait correspondre le nombre d'atomes de /K, pris dans N ⋃ {∞}.Nous montrons maintenant que les structures possibles peuvent être définies de façon axiomatique en introduisant une classe équationnelle d'algèbres de Heyting munies d'une opération unaire, dites sa-algèbres de Heyting (en abrégé sa-AH), et en prouvant que cette classe est constituée des algèbres pouvant être plongées dans l'algèbre de Heyting des idéaux d'une algèbre de Boole, munie de l'opérateur sa. Ainsi les sont, à isomorphisme près, les sa-AH engendrées par des éléments distingués indéxés dans X; on en déduit une classification des extensions complètes de Tx en montrant que les applications qui peuvent être associées à une structure de la forme pour caractériser la théorie d'un modèle sont déterminées par leur restriction à une partie M() définie uniformément, sur laquelle elles prennent des valeurs dans (N − {0}) ⋃ {∞}, et que réciproquement toute application de M() dans (N − {0}) ⋃ {∞} est une telle restriction.
Une conséquence de la classification des théories complètes d'algèbres de Boole par Tarski [5] est que la théorie élémentaire d'une algèbre de Boole A est déterminée par le type d'isomorphisme du treillis de ses idéaux définissables et, pour chacun de ces idéaux, par le nombre d'atomes du quotient de A par cet idéal lorsque ce nombre est fini. Une remarque analogue peut être faite à propos des cas particuliers d'algèbres de Boole munies d'un idéal distingué étudiés par Ershov [1] et par Jurie et Touraille [3]; dans to us ces cas, c'est la simplicité des treillis possibles qui permet la classification des théories complètes. Le résultat principal de cet article est que, dans le cas général d'une algèbre de Boole munie d'une famille quelconque d'idéaux distingués, la théorie d'un modèle peut encore être caractérisée grâce à une structure algébrique sur l'ensemble de ses idéaux définissables. Il s'agit d'une structure d'algèbre de Heyting munie d'une opération unaire sa définie par sa(K) = {a: a/K est sans atome}, et cette structure s'avère être engendrée par les idéaux distingués du modèle. La méthode utilisée est l'élimination directe des quantificateurs, par réductions successives des formules. Elle nécessite des propriétés algébriques et topologiques qui sont données aux §§1 et 2: on introduit au §1 la notion d'algèbre de Heyting étoilée, c'est-à-dire d'algèbre de Heyting munie d'une opération unaire * vérifiant des égalités qui permettent de rendre compte, d'une certaine façon, de la dérivation de Cantor-Bendixon; le §2 est consacré à des propriétés topologiques qui, dans le cas de l'espace de Stone d'une algèbre de Boole A, permettent d'éclaircir les relations possibles entre les atomes des quotients de A par des idéaux différents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.