The present work demonstrates the capability of several type of molecular frame photoelectron angular distributions (MFPADs) and their linked chiroptical phenomenon the photoelectron circular dichroism (PECD) to map in great detail the molecular geometry of polyatomic chiral molecules as a function of photoelectron energy. To investigate the influence of the molecular potential on the MFPADs, two chiral molecules were selected, namely 2-(methyl)oxirane (C3H6O, MOx, m = 58,08 uma) and 2-(trifluoromethyl)oxirane (C3H3F3O, TFMOx, m = 112,03 uma). The two molecules differs in one substitutional group and share an oxirane group where the O(1s) electron was directly photoionized with the use of synchrotron radiation in the soft X-ray regime. The direct photoionization of the K-shell electron is well localized in the molecule and it induces the ejection of two or more electrons; the excited system separates into several charged (and eventually neutral) fragments which undergo Coulomb explosion due to their charges. The electrons and the fragments were detected using the COLd Target Recoil Ion Momentum Spectroscopy (COLTRIMS) and the momentum vectors calculated for each fragment belonging from a single ionization. The former method gives the possibility to post-orient molecules in space, giving access to the molecular frame, thus the MFPAD and its related PECD for multiple light propagation direction. Stereochemistry (from the Greek στερεο- stereo- meaning solid) refers to chemistry in three dimensions. Since most molecules show a three-dimensional structure (3D), stereochemistry pervades all fields of chemistry and biology, and it is an essential point of view for the understanding of chemical structure, molecular dynamics and molecular reactions. The understanding of the chemistry of life is tightly bounded with major discoveries in stereochemistry, which triggered tremendous technical advancements, making it a flourishing field of research since its revolutionary introduction in late 18th century. In chemistry, chirality is a brunch of stereochemistry which focuses on objects with the peculiar geometrical property of not being superimposable to their mirror-images. The word chirality is derived from the Greek χειρ for “hand”, and the first use of this term in chemistry is usually attributed to Lord Kelvin who called during a lecture at the Oxford University Junior Scientific Club in 1893 “any geometrical figure, or group of points, “chiral”, and say that it has chirality if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself.”. Although the latter is usually considered as the birth of the word chirality, the concept underlying it was already present in several fields of science (above all mathematics), already proving the already multidisciplinary relevance of chirality across many field of science and beyond. Nature shows great examples of chiral symmetry on all scales. Empirically, it is possible to observe it at macroscopic scale (e.g. distribution of rotations of galaxies), down to the microscopic scale (e.g. structure of some plankton species), but it is at the molecular level where the number gets remarkable: most of the pharmaceutical drugs, food fragrances, pheromones, enzymes, amino acids and DNA molecules, in fact, are chiral. Moreover, the concept of chirality goes far beyond the mere spatial symmetry of objects being crucially entangled with the fundamental properties of physical forces in nature. The symmetry breaking, namely the different physical behaviour of a two chiral systems upon the same stimuli, is considered to be one of the best explanation for the long standing questions of homochirality in biological life, and ultimately to the chemical origin of life on Earth as we know it. Our organism shows high enantio-selectivity towards specific compounds ranging from drugs, to fragrances. Over 800 odour molecules commonly used in food and fragrance industries have been identified as chiral and their enantiomeric forms are perceived to have very different smells, as the well-know example of D- and L- limonene. Similarly, responses to pharmaceuticals drugs can be enantiomer specific, and in fact about 60 % the drugs currently on the market are chiral compounds, and nearly 90 % of them are sold as racemates. The same degree of enantio-selectivity is observed in the communications systems of plants and insects. Plants produce lipophilic liquids with high vapour pressure called plant volatiles (PVs) which are synthesized via different enzymes called tarpene synthases that are usually chiral. Chiral molecules and chiral effects have a strong impact on all the fields of science with exciting developments ranging from stereo-selective synthesis based on heterogeneous enantioselective catalysis, to optoelctronics, to photochemical asymmetric synthesis, and chiral surface science, just to cite a few. Chiral molecules come in two forms called enantiomers. Their almost identical chemical and physical properties continue to pose technical challenges concerning the resolution of racemic mixtures, the determination of the enantiomeric excess, and the direct determination of the absolute configuration of an enantiomer. ...