A $t$-walk-regular graph is a graph for which the number of walks of given
length between two vertices depends only on the distance between these two
vertices, as long as this distance is at most $t$. Such graphs generalize
distance-regular graphs and $t$-arc-transitive graphs. In this paper, we will
focus on 1- and in particular 2-walk-regular graphs, and study analogues of
certain results that are important for distance regular graphs. We will
generalize Delsarte's clique bound to 1-walk-regular graphs, Godsil's
multiplicity bound and Terwilliger's analysis of the local structure to
2-walk-regular graphs. We will show that 2-walk-regular graphs have a much
richer combinatorial structure than 1-walk-regular graphs, for example by
proving that there are finitely many non-geometric 2-walk-regular graphs with
given smallest eigenvalue and given diameter (a geometric graph is the point
graph of a special partial linear space); a result that is analogous to a
result on distance-regular graphs. Such a result does not hold for
1-walk-regular graphs, as our construction methods will show