The need to realize more effective ignition systems and exploit their full potential in aerospace propulsion applications has led to significant developments in laser and power systems. This work aims to investigate experimentally and describe mathematically the effectiveness of laser systems based on varying key parameters and their related effects on the sensitivity, ignition threshold, and combustion performance of boron potassium nitrate, then to define the key variables with the most significant influence on the overall system. Understanding the physics and chemistry behind the combined system of laser power source and optics system, and the considered medium as well as the interaction in between, led to a better apprehension of how an optimal and viable solution can be achieved in terms of ignition delays, burning times, and combustion temperatures, considering laser wavelength, power and energy densities, and the focal length displacement over a changing working distance. This is of paramount importance when operating amid difficult conditions in aerospace propulsion applications or during outer space missions, particularly those involving manned missions, not only in terms of performance and efficiency but also safety, engineering, and economic feasibility.