The definition of the thermal state of containers with spent nuclear fuel is important part of the ensuring of its safe storage during all period of storage facility operation. The this work all investigations are carried out for the storage containers of spent nuclear fuel of WWER-1000 reactors, which are operated in the Dry Spent Nuclear Fuel Storage Facility in Zaporizhska NPP. The analysis of existing investigations in the world nuclear engineering science concerning to the prediction of maximum temperatures in spent nuclear fuel storage container is carried out. The absence of studies in this field is detected and the necessity of the dependence for the maximum temperature in the storage container and temperature of cooling air on the exit of ventilation duct from variated temperatures of atmospheric air and decay heat formulation is pointed out. With usage of numerical simulation by solving of the conjugate heat transfer problems, the dependence of maximum temperatures in storage container with spent nuclear fuel from atmospheric temperature and decay heat is detected. The verification of used calculation method by comparison of measured air temperature on exit of ventilation channels and calculated temperature of cooling air was carried out. By regression analysis of numerical results of studies the dependence of ventilation air temperature from the temperature of atmospheric air and the decay heat of spent nuclear fuel was formulated. For the obtained dependence the statistical analysis was carried out and confidence interval with 95% of confidence is calculated. The obtained dependences are expediently to use under maximum temperature level estimation at specified operation conditions of spent nuclear fuel storage containers and for the control of correctness of thermal monitoring system work.