In this research, the mixing of compressed air with the minimum quantity of water is used as a dielectric medium and the cryogenically cooled molybdenum wire is used as a tool in wire-cut electrical discharge machining (WEDM) to encourage the eco-friendly production, called cryogenically cooled near-dry WEDM process. The nitrogen gas-cooled wire tool is utilized to cut the Inconel 718 alloy workpiece to prevent wire breakage and maintain enough electrical conductivity. The preliminary experiments were conducted to compare wet, dry, near-dry, and cryogenically cooled near-dry WEDM processes. It was revealed that cryogenic cooled near-dry WEDM is better performance than dry, near-dry WEDM except for the wet process. The systematic experiments of eco-friendly cryogenically cooled near-dry WEDM have been conducted to analyse the effect of input factors like spark current, pulse-width, pulse-interval, and mixing water flow rate on material removal rate (MRR) and surface roughness (SR) using Box–Behnken method. The fitted models and response surface graphs were developed to analyse the influences of input factors on each response parameter. It was concluded that MRR and SR of cryogenically cooled near-dry WEDM are increased by maximizing spark current, pulse-width, and flow rate, conversely, both responses were decreased by increasing pulse-interval. The technique for order of preference by similarity to ideal solution (TOPSIS) technique has been applied to predict the best combination of input factors for satisfying the optimal values of both responses.