Floral initiation is an important transition point from vegetative growth to reproductive growth in tomatoes and is known to be affected by light intensity, temperature, and nutrients. However, the regulation between flower formation and environmental factors, including nutrient conditions, due to source–sink dynamics (supply and demand of photoassimilates) is seldom documented. To evaluate the effects of light intensity and nutrition conditions on prefloral formation and development, dynamic floral characteristics during development were fitted with sigmoidal logistic curves under four light treatments with shading nets in two nutrient conditions. Source activity and sink strength were altered, which caused differences in the floral positions, length of floral shoots, floral initiation dates, and leaf numbers under the different treatments. Accumulated light acts upstream of nutrition supply during the formation of buds and leads to the accumulation of carbohydrates in source organs. Leaf area reached ≈500 cm2, and dry matter weights reached ≈3 g in each treatment until the flowering day, revealing that some level of photoassimilates are necessary for floral initiation. Both days to flowering and bud number were highly correlated with daily light integral (DLI) from 6 to 12 days before anthesis, which means this period is important for anthesis in tomato. Our results highlight regulation of the transition from vegetative growth to reproductive growth by tomato seedlings due to environmental factors and nutrients. A better understanding of communication between source organs and sink organs during floral initiation response to different environments is expected to provide management strategies for greenhouse tomato production.