SummaryShoot branching and plant height are among the key factors that define the overall architecture of plants. We found that overexpression of a cDNA for a zinc-finger protein of petunia, designated Lateral shoot-Inducing Factor (LIF), in transgenic petunia plants resulted in a dramatic increase in lateral shoots and reduced plant height. LIF overexpression also caused a decrease in the number of cells in the stem, leaf, and flower, accompanied by enlargement of cells. trans-Zeatin was decreased while N 6 -(D 2 -isopentenyl)adenine was increased in the leaves of LIF-overexpressed petunia. Most of the riboside, ribotide, and glucoside forms were also increased. Expression analysis using a LIF::GUS fusion gene and RT-PCR suggested that LIF is specifically expressed around the bases of axillary buds and weakly in basal part of flowers in wild-type petunia. GFP-LIF-GUS fusion proteins were translocated into the nucleus when transiently expressed in onion epidermal cells. LIF overexpression resulted in enhanced branching also in tobacco and Arabidopsis, indicating the conservation of the response to LIF overexpression among dicotyledonous plants. On the basis of these results we discuss about possible functions of LIF.
There have been few reports on the morphology of flower opening, despite its horticultural significance. It is not clear when cell division stops during rose petal development or what changes occur in cell morphology. This study aims to clarify the details of cell morphological changes during rose petal development. Rose (Rosa hybrida L. 'Sonia') petals were sampled in six flower bud stages. Cell morphological changes were observed by light microscopy, transmission and scanning electron microscopy using cross sections of the petals, and the number of epidermal cells was measured using Nomarski differential interference contrast microscopy. The number of epidermal cells increased with flower opening, but the rate of increase in the number of abaxial epidermal cells slowed down at an earlier stage than in adaxial epidermal cells. The increase in the epidermal cell area was much more rapid in later stages compared with the increase in cell number, suggesting that petal growth in later stages is mainly due to cell expansion. During flower opening, the unique expansion of spongy parenchyma cells produced large air spaces. Epidermal cells of the upper part showed obvious lateral expansion. In particular, marked expansion of adaxial epidermal cells with enlargement of the central vacuole was observed. Differences in the patterns of cell expansion among cell types and locations would contribute to the reflex of petals during rose flower opening.
Homeotic class B genes GLOBOSA (GLO)/PISTILLATA (PI) and DEFICIENS (DEF)/APETALA3 (AP3) are involved in the development of petals and stamens in Arabidopsis. However, functions of these genes in the development of floral organs in torenia are less well known. Here, we demonstrate the unique floral phenotypes of transgenic torenia formed due to the modification of class B genes, TfGLO and TfDEF. TfGLO-overexpressing plants showed purple-stained sepals that accumulated anthocyanins in a manner similar to that of petals. TfGLO-suppressed plants showed serrated petals and TfDEF-suppressed plants showed partially decolorized petals. In TfGLO-overexpressing plants, cell shapes on the surfaces of sepals were altered to petal-like cell shapes. Furthermore, TfGLO- and TfDEF-suppressed plants partially had sepal-like cells on the surfaces of their petals. We isolated putative class B gene-regulated genes and examined their expression in transgenic plants. Three xyloglucan endo-1,4-beta-d-glucanase genes were up-regulated in TfGLO- and TfDEF-overexpressing plants and down-regulated in TfGLO- and TfDEF-suppressed plants. In addition, 10 anthocyanin biosynthesis-related genes, including anthocyanin synthase and chalcone isomerase, were up-regulated in TfGLO-overexpressing plants and down-regulated in TfGLO-suppressed plants. The expression patterns of these 10 genes in TfDEF transgenic plants were diverse and classified into several groups. HPLC analysis indicated that sepals of TfGLO-overexpressing plants accumulate the same type of anthocyanins and flavones as wild-type plants. The difference in phenotypes and expression patterns of the 10 anthocyanin biosynthesis-related genes between TfGLO and TfDEF transgenic plants indicated that TfGLO and TfDEF have partial functional divergence, while they basically work synergistically in torenia.Electronic supplementary materialThe online version of this article (doi:10.1007/s00438-010-0574-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.