Abstract. Thermographic measurements using an IR scanner have been performed at the pump limiter ALT-II of TEXTOR-94 during RI mode discharges and during disruptions. The measurements on the RI mode discharges were done to complete the TEXTOR database which had shown a structured decay pattern of the deposited power. It was found that the underlying radial heat flux can be described by two exponential decay functions. This structure, which generates an unexpected heat component close to the tangent line, has been observed in all discharge conditions including the RI mode. During disruptions, the heat is released in short pulses with a typical duration of 0.01-0.1 ms. The radial decay length of these pulses has a similar shape to the heat flux during normal discharges: it consists again of a strong component close to the tangent line with a radial decay length of 2-5 mm and probably one with a decay length of the order of 1 cm. The heat is released at the time when the edge electron temperature of the plasma drops, when intense hydrogen and carbon fluxes occur near the walls, and when electrical currents in the limiter blades are excited. In a tentative interpretation, the temporal and spatial structure of the heat pulse is attributed to the presence and growth of a laminar zone at the plasma edge, which is connected with the ergodization of the plasma edge during a disruption.