We report new data from Pesyanoe-90,1 (dark lithology) on the isotopic signature of solar wind (SW) Xe as recorded in this enstatite achondrite which represents a soil-breccia of an asteroidal regolith. The low temperature (≤800°C) steps define the Pesyanoe-S xenon component, which is isotopically consistent with SW Xe reported for the lunar regolith. This implies that the SW Xe isotopic signature was the same at two distinct solar system locations and, importantly, also at different times of solar irradiation. Further, we compare the calculated average solar wind "SW-Xe" signature to Chass-S Xe, the indigenous Xe observed in SNC (Mars) meteorites. Again, a close agreement between these compositions is observed, which implies that a mass-dependent differential fractionation of Xe between SW-Xe and Chass-S Xe is <1.5‰ per amu. We also observe fractionated (Pesyanoe-F) Xe and Ar components in higher temperature steps and we document a fission component due to extinct 244 Pu. Interestingly, the Pesyanoe-F Xe component is revealed only at the highest temperatures (>1200°C). The Pesyanoe-F gas reveals Xe isotopic signatures that are consistent with lunar solar energetic particles (SEP) data and may indicate a distinct solar energetic particle radiation as was inferred for the moon. However, we cannot rule out fractionation processes due to parent body processes. We note that ratios 36 Ar/ 38 Ar ≤5 are also consistent with SEP data. Calculated abundances of the fission component correlate well with radiogenic 40 Ar concentrations, revealing rather constant 244 Pu/K ratios in Pesyanoe, and separates thereof, and indicate that both components were retained. We identify a nitrogen component (δ 15 N = 44‰) of non-solar origin with an isotopic signature distinct from indigenous N (δ 15 N = −33‰). While large excesses at 128 Xe and 129 Xe are observed in the lunar regolith samples, these excesses in Pesyanoe are small. On the other hand, significant 126 Xe isotopic excesses, comparable to relative excesses observed in lunar soils and breccias, are prominent in the intermediate temperature steps of Pesyanoe-90,1.