PHB has interesting features such as biodegradability, sustainability and durability. However, it has a high cost, in addition to being hard, brittle and thermally unstable during processing. Therefore, it was found convenient to study the crystallization of PHB/20% babassu compounds, with the intention of reducing the cost of the composite, in addition to seeking improvements in thermal properties. In this work, the parameters of melt crystallization were studied for PHB/20% babassu compounds driven at different cooling rates under a nitrogen flow. Subsequently, crystallization parameters were compared for different cooling rates. A kinetic analysis of data obtained for melt crystallization was performed. Among the models studied, Pseudo-Avrami showed the best correlation with experimental data, with discrepancy between +6% and -4%. The Mo model presented a discrepancy between +15% and -8%. A modified Mo model discrepancies are reduced to +3% and -4% within the range of validity of the model.