For a two-dimensional piezoelectric plate, the thermoelectroelastic Green's functions for bimaterials subjected to a temperature discontinuity are presented by way of Stroh formalism. The study shows that the thermoelectroelastic Green's functions for bimaterials are composed of a particular solution and a corrective solution. All the solutions have their singularities, located at the point applied by the dislocation, as well as some image singularities, located at both the lower and the upper half-plane. Using the proposed thermoelectroelastic Green's functions, the problem of a crack of arbitrary orientation near a bimaterial interface between dissimilar thermopiezoelectric material is analysed, and a system of singular integral equations for the unknown temperature discontinuity, de®ned on the crack faces, is obtained. The stress and electric displacement (SED) intensity factors and strain energy density factor can be, then, evaluated by a numerical solution at the singular integral equations. As a consequence, the direction of crack growth can be estimated by way of strain energy density theory. Numerical results for the fracture angle are obtained to illustrate the application of the proposed formulation.