In the nanoscale beam, two effects become domineering. One is the non-Fourier effect in heat conduction and the other is the coupling effect between temperature and strain rate. In the present study, a generalized solution for the generalized thermoelastic vibration of gold nano-beam resonator induced by ramp type heating is developed. The solution takes into account the above two effects. State-space and Laplace transform methods are used to determine the lateral vibration, the temperature, the displacement, the stress and the strain energy of the beam. The effects of the relaxation time and the ramping time parameters have been studied. When very fast phenomena and small structure dimensions are involved, the classical law of Fourier becomes inaccurate.