This paper explores the thermal behavior of multiple interface cracks situated between a half-plane and a thermal coating layer when subjected to transient thermal loading. The temperature distribution is analyzed using the hyperbolic heat conduction theory. In this model, cracks are represented as arrays of thermal dislocations, with densities calculated via Fourier and Laplace transformations. The methodology involves determining the temperature gradient within the uncracked region, and these calculations contribute to formulating a singular integral equation specific to the crack problem. This equation is subsequently utilized to ascertain the dislocation densities at the crack surface, which facilitates the estimation of temperature gradient intensity factors for the interface cracks experiencing transient thermal loading. This paper further explores how the relaxation time, loading parameters, and crack dimensions impact the temperature gradient intensity factors. The results can be used in fracture analysis of structures operating at high temperatures and can also assist in the selection and design of coating materials for specific applications, to minimize the damage caused by temperature loading.