Adsorption and removal of fluoride from brick tea is very important but challenging. In this work, two fumarate-based metal-organic frameworks (MOFs) were synthesized for the selective removal of fluoride from brick tea infusion. MOFs were examined for adsorption time, effect of dose, and uptake capacity at different initial concentrations and temperatures. Remarkably, over 80% fluoride removal was achieved by MOF-801 within 5 min at room temperature, while no significant adsorption occurred for the catechins and caffeine in the brick tea infusion. Further, with the use of the Langmuir equation, the maximum fluoride uptake capacity for the nontoxic calcium fumarate (CaFu) MOF was calculated to be as high as 166.11 mg g−1 at 373 K. As observed from FTIR, EDX and XPS results, hydroxyl group in MOFs were substituted by fluoride. This work demonstrates that the novel fumarate-based MOFs are promising materials for the selective removal of fluoride from brick tea infusion.