Abstract:The proper definition of thermodynamics and the thermodynamic entropy is discussed in the light of recent developments. The postulates for thermodynamics are examined critically, and some modifications are suggested to allow for the inclusion of long-range forces (within a system), inhomogeneous systems with non-extensive entropy, and systems that can have negative temperatures. Only the thermodynamics of finite systems are considered, with the condition that the system is large enough for the fluctuations to be smaller than the experimental resolution. The statistical basis for thermodynamics is discussed, along with four different forms of the (classical and quantum) entropy. The strengths and weaknesses of each are evaluated in relation to the requirements of thermodynamics. Effects of order 1/N, where N is the number of particles, are included in the discussion because they have played a significant role in the literature, even if they are too small to have a measurable effect in an experiment. The discussion includes the role of discreteness, the non-zero width of the energy and particle number distributions, the extensivity of models with non-interacting particles, and the concavity of the entropy with respect to energy. The results demonstrate the validity of negative temperatures.