Abstract-Spectroscopic characterization of lanthanum beryllate La2Be2O5 (BLO) single crystals doped with trivalent ions of Er, Nd or Pr, was carried out in the ultraviolet-visible spectral range using synchrotron radiation spectroscopy in combination with conventional optical absorption and luminescence spectroscopy techniques. On the basis of the obtained data, the energy level diagram for these trivalent impurity ions in BLO host lattice was developed; the optical and electronic properties of the crystals were determined; the possibility of the 4f -4f , 4f -5d and charge transfer transitions was analyzed; spectroscopic properties of the lattice defects formed during the introduction of trivalent impurity ions in the BLO host lattice, were investigated. We found that the lattice defects are responsible for a wide-band photoluminescence (PL) in the energy region of 400-600 nm. The most efficient excitation of the defect photoluminescence in the energy gap of BLO occurs in broad PL excitation-bands at 270 and 240 nm. The PL intensity of defects depends on the type of impurity ion and increases in the sequence: Pr-Nd-Er.