In the quest for replacement of indium-tin-oxide (ITO), Ti-doped zinc oxide (TZO) films have been synthesized by atomic layer deposition (ALD) and applied as n-type transparent conductive oxide (TCO). TZO thin films were obtained from titanium (IV) i-propoxide (TTIP), diethyl zinc and water, by introducing TiO2 growth cycle in a ZnO matrix. Process parameters such as the order of precursor introduction, the cycle ratio and the film thickness were optimized. The as-deposited films were analyzed for their surface morphology, elemental stoichiometry, optoelectronic properties and crystallinity, using a variety of characterization techniques. The growth mechanism was investigated for the first time by in situ quartz-crystal microbalance measurements. It evidenced different insertion modes of titanium depending on the precursor introduction, as well as the etching of Zn-Et surface groups by TTIP. Resistivity as low as 1.2 × 10 -3 Ω cm and transmittance > 80% in the visible range were obtained for 72-nm thick films. Finally, the first application of ALD-TZO as TCO was reported. TZO films were successfully implemented as top electrodes in silicon nanowire solar cells. The unique properties of TZO combined with conformal coverage realized by ALD technique make it possible for the cell to show almost flat EQE response, surpassing the bell-like EQE curve seen in devices with sputtered ITO top electrode.