Solid oxide fuel cells convert chemical energy directly into electrical energy with high efficiency and low emission of pollutants. However, before fuel cell technology can gain a significant share of the electrical power market, the operation temperature needs to be reduced in order to decrease costs and improve the durability of the cells. Application of thin film electrolytes and barrier coatings is a way of achieving this goal.In this thesis, I have investigated film growth and microstructure of yttriastabilized zirconia (YSZ) and gadolinia-doped ceria (CGO) thin films deposited by physical vapor deposition. The aim is to make industrially applicable coatings suitable for application in solid oxide fuel cells (SOFCs). For this purpose, the coatings need to be thin and dense. YSZ coatings were prepared by pulsed direct current (DC) magnetron sputtering and high power impulse magnetron sputtering (HiPIMS) in both laboratoryand industrial-scale setups.Industrial-scale pulsed DC magnetron sputtering of YSZ showed that homogenous coating over large areas was possible. In order to increase film density of the YSZ, HiPIMS was used. By tuning deposition pressure, peak power density and substrate bias voltage it was possible to deposit noncolumnar thin films without voids and cracks as desired for SOFC applications.CGO coatings were deposited by pulsed DC magnetron sputtering with the purpose of implementing diffusion barriers to prevent reactions between Sr from the SOFC cathode and the electrolyte. A model system simulating a SOFC was prepared by depositing thin CGO and YSZ layers on cathode material. This setup allowed the study of Sr diffusion by observing SrZrO 3 formation using X-ray diffraction while annealing. Electron microscopy was subsequently performed to confirm the results. The study revealed Sr to diffuse along column/grain boundaries in the CGO films but by modifying the film thickness and microstructure the breaking temperature of the barrier could be increased.CGO thin films were implemented in metal-based SOFC and the influence of film microstructure and thickness on the electrochemical performance of the cell was studied. Cell tests showed that an area specific resistance (ASR) down to 0.27 Ωcm 2 could be obtained at 650 °C with sputtered CGO barrier layers in combination with a lanthanum strontium cobaltite cathode. In comparison a spin-coated CGO barrier resulted in an ASR value of 0.50 Ωcm 2 . This shows the high effectiveness of the sputtered barrier in obtaining state-of-the-art performance. In summary, this work provides fundamental understanding of the deposition and growth of YSZ and CGO thins films and proves the prospective of employing thin film barrier coatings in order to obtain high-performing SOFCs.i ii POPULÄRVETENSKAPLIG SAMMANFATTNING Genom historien har människan alltid strävat efter att förbättra sina levnadsvillkor genom att förbättra eller utveckla nya verktyg och material. Utvecklingen av nya material har i hög grad påverkat civilisationen uppkomst, vilket framgår av...