Flexible humidity sensors with high sensitivity, fast response time, and outstanding reliability have the potential to revolutionize electronic skin, healthcare, and non-contact sensing. In this study, we employed a straightforward nanocluster deposition technique to fabricate a resistive humidity sensor on a flexible substrate, using molybdenum oxide nanoparticles (MoO x NPs). We systematically evaluated the humidity-sensing behaviors of the MoO x NP film-based sensor and found that it exhibited exceptional sensing capabilities. Specifically, the sensor demonstrated high sensitivity (18.2 near zero humidity), a fast response/recovery time (1.7/2.2 s), and a wide relative humidity (RH) detection range (0−95%). The MoO x NP film, with its closely spaced granular nanostructure and high NP packing density, exhibited insensitivity to mechanical deformation, small hysteresis, good repeatability, and excellent stability. We also observed that the device exhibited distinct sensing kinetics in the range of high and low RH. Specifically, for RH > 43%, the response time showed a linear prolongation with increased RH. This behavior was attributed to two factors: the higher physical adsorption energy of H 2 O molecules and a multilayer physical adsorption process. In terms of applications, our sensor can be easily attached to a mask and has the potential to monitor human respiration owing to its high sensing performance. Additionally, the sensor was capable of dynamically tracking RH changes surrounding human skin, enabling a non-contact sensing capability. More significantly, we tested an integrated sensor array for its ability to detect moisture distribution in the external environment, demonstrating the potential of our sensor for contactless human−machine interaction. We believe that this innovation is particularly valuable during the COVID-19 epidemic, where cross-infection may be averted by the extensive use of contactless sensing. Overall, our findings demonstrate the tremendous potential of MoO x NP-based humidity sensors for a variety of applications, including healthcare, electronic skin, and non-contact sensing.