In this work, the working performance of Platinum (Pt), solvent-free nanoparticle (NP)-based strain sensors made on a flexible substrate has been studied. First, a new model has been developed in order to explain sensor behaviour under strain in a more effective manner than what has been previously reported. The proposed model also highlights the difference between sensors based on solvent-free and solvent-based NPs. As a second step, the ability of atomic layer deposition (ALD) developed Al2O3 (alumina) thin films to act as protective coatings against humidity while in adverse conditions (i.e., variations in relative humidity and repeated mechanical stress) has been evaluated. Two different alumina thicknesses (5 and 11 nm) have been tested and their effect on protection against humidity is studied by monitoring sensor resistance. Even in the case of adverse working conditions and for increased mechanical strain (up to 1.2%), it is found that an alumina layer of 11 nm provides sufficient sensor protection, while the proposed model remains valid. This certifies the appropriateness of the proposed strain-sensing technology for demanding applications, such as e-skin and pressure or flow sensing, as well as the possibility of developing a comprehensive computational tool for NP-based devices.
Surface acoustic wave (SAW) resonators are low cost devices that can operate wirelessly on a received radio frequency (RF) signal with no requirement for an additional power source. Multiple SAW resonators operating as transponders that form a wireless sensor network (WSN), often need to operate at tightly spaced, different frequencies inside the industrial, scientific and medical (ISM) bands. This requires nanometer precision in the design and fabrication processes. Here, we present results demonstrating a reliable and repeatable fabrication process that yields at least four arrays on a single 4-inch wafer. Each array consists of four single-port resonators with center frequencies allocated inside four different sub-bands that have less than 50 kHz bandwidth and quality factors exceeding 8000. We see promise of standard, low-cost photolithography techniques being used to fabricate multiple SAW resonators with different center resonances all inside the 433.05 MHz–434.79 MHz ISM band and a mere 100 kHz spacing. We achieved that by leveraging the intrinsic process variation of photolithography and the impact of the metallization ratio and metal thickness in rendering distinct resonant frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.