In urban transportation systems, bicycle sharing systems are majorly deployed in major cities of both developed and developing countries. The recent boom of bicycle sharing system along with its upgraded technology have opened new opportunities towards urban transportation system. With the enlargement of intelligent transportation systems (ITS's), smart bicycle sharing schemes are more popular to smart cities as a green transportation mode. In this article, the Internet of Things (IoT) and artificial intelligence-based monitoring devices have been proposed for the bicycles. This system contains a harmful exhaust gas sensor, wireless module, and a GPS receiver and camera that are capable to send data with time and date stamping. In addition, sensor also integrated on the bicycle for the fall detection. An artificial neural network (ANN) and support vector machine (SVM) applied to the data collected at central server is designed to analyze the root mean square error (RMSE), and coefficient of correlation (R2). Result shows that ANN performance is better when compared to SVM.