Pontamine fast scarlet 4B is a red paper and textiles dye that has recently been introduced as a fluorescent probe for plant cell walls. Pontamine exhibits bifluorescence, or fluorescence dependent on the polarization of the excitation light: Because cellulose is aligned within the cell wall, pontamine-labelled cell walls exhibit variable fluorescence as the excitation polarization is modulated. Thus, bifluorescence measurements require polarized excitation that can be directly or indirectly modulated. In our confocal microscopy observations of various cellulose samples labelled with pontamine, we modulated excitation polarization either through sample rotation or by the confocal's scanfield rotation function. This variably rotated laser polarizations on Leica confocal microscopes, but not those from other makers. Beginning with samples with directly observable microfibril orientations, such as purified bacterial cellulose, the velamen of orchid roots and the inner S2 layer of radiata pine compression wood, we demonstrate that modelling the variations in pontamine fluorescence with a sine curve can be used to measure the known microfibril angles. We then measured average local microfibril angles in radiata pine samples, and showed similar microfibril angles in compression and normal (opposite) wood. Significantly, bifluorescence measurements might also be used to understand the degree of local cellulose alignment within the cell wall, as opposed to variations in the overall cellulose angle.