Background
Extended-spectrum β-lactamase producing Enterobacterales (ESBL-E) are important causative agents for infections in humans and animals. At the Equine Veterinary Teaching Hospital of the University of Helsinki, the first infections caused by ESBL-E were observed at the end of 2011 leading to enhanced infection surveillance. Contact patients were screened for ESBL-E by culturing infection sites and rectal screening. This study was focused on describing the epidemiology and microbiological characteristics of ESBL-E from equine patients of the EVTH during 2011–2014, and analysing putative risk factors for being positive for ESBL-E during an outbreak of Klebsiella pneumoniae ST307.
Results
The number of ESBL-E isolations increased through 2012–2013 culminating in an outbreak of multi-drug resistant K. pneumoniae ST307:blaCTX-M-1:blaTEM:blaSHV during 04–08/2013. During 10/2011–05/2014, altogether 139 ESBL-E isolates were found from 96 horses. Of these, 26 were from infection-site specimens and 113 from rectal-screening swabs. A total of 118 ESBL-E isolates from horses were available for further study, the most numerous being K. pneumoniae (n = 44), Escherichia coli (n = 31) and Enterobacter cloacae (n = 31). Hospital environmental specimens (N = 47) yielded six isolates of ESBL-E. Two identical E. cloacae isolates originating from an operating theatre and a recovery room had identical or highly similar PFGE fingerprint profiles as five horse isolates. In the multivariable analysis, mare–foal pairs (OR 4.71, 95% CI 1.57–14.19, P = 0.006), length of hospitalisation (OR 1.62, 95% CI 1.28–2.06, P < 0.001) and passing of a nasogastric tube (OR 2.86, 95% CI 1.03–7.95, P = 0.044) were associated with being positive for ESBL-E during the K. pneumoniae outbreak.
Conclusions
The occurrence of an outbreak caused by a pathogenic ESBL-producing K. pneumoniae ST307 strain highlights the importance of epidemiological surveillance of ESBL-E in veterinary hospitals. Limiting the length of hospitalisation for equine patients may reduce the risk of spread of ESBL-E. It is also important to acknowledge the importance of nasogastric tubing as a potential source of acquiring ESBL-E. As ESBL-E were also found in stomach drench pumps used with nasogastric tubes, veterinary practices should pay close attention to appropriate equipment cleaning procedures and disinfection practices.