Abstract-SRC, a supervised classifier via sparse representation, has rapidly gained popularity in recent years and can be adapted to a wide range of applications based on the sparse solution of a linear system. First, we offer an intuitive geometric model called constrained subspace to explain the mechanism of SRC. The constrained subspace model connects the dots of NN, NFL, NS, NM. Then, inspired from the constrained subspace model, we extend SRC to its tensor-based variant, which takes as input samples of high-order tensors which are elements of an algebraic ring. A tensor sparse representation is used for query tensors. We verify in our experiments on several publicly available databases that the tensor-based SRC called tSRC outperforms traditional SRC in classification accuracy. Although demonstrated for image recognition, tSRC is easily adapted to other applications involving underdetermined linear systems.