The thoracic duct (TD) drains most of the body's lymph back to the venous system via its lymphovenous junction (LVJ), playing a pivotal role in fluid homeostasis, fat absorption and the systemic immune response. The respiratory cycle is thought to assist with lymph flow, but the precise mechanism underpinning terminal TD lymph flow into the central veins is not well understood. The aim of this study was to use ultrasonography (US) to explore the relationship between terminal TD lymph flow, the respiratory cycle, and gravity. The left supraclavicular fossa was scanned in healthy non‐fasted volunteers using high‐resolution (13–5 MHz) US to identify the terminal TD and the presence of a lymphovenous valve (LVV). The TD's internal diameter was measured in relation to respiration (inspiration vs. expiration) and body positioning (supine vs. Trendelenburg). The terminal TD was visualized in 20/33 (61%) healthy volunteers. An LVV was visualized in only 4/20 (20%) cases. The mean terminal TD diameter in the supine position was 1.7 mm (range 0.8–3.1 mm); this increased in full inspiration (mean 1.8 mm, range 0.9–3.2 mm, p < 0.05), and in the Trendelenburg position (mean 1.8 mm, range 1.2–3.1 mm, p < 0.05). The smallest mean terminal TD diameter occurred in full expiration (1.6 mm, range 0.7–3.1 mm, p < 0.05). Respiration and gravity impact the terminal TD diameter. Due to the challenges of visualizing the TD and LVJ, other techniques such as dynamic magnetic resonance imaging will be required to fully understand the factors governing TD lymph flow.