In the general population, obesity is known to be associated with adverse outcomes, including mortality. In contrast, high body mass index (BMI) may provide a survival advantage for hemodialysis patients, which is known as the obesity paradox. Although BMI is the most commonly used measure for the assessment of obesity, it does not distinguish between fat and lean mass. Fat mass is considered to serve as an energy reserve against a catabolic condition, while the capacity to survive starvation is also thought to be dependent on its amount. Thus, fat mass is used as a nutritional marker. For example, improvement of nutritional status by nutritional intervention or initiation of hemodialysis is associated with an increase in fat mass. Several studies have shown that higher levels of fat mass were associated with better survival in hemodialysis patients. Based on body distribution, fat mass is classified into subcutaneous and visceral fat. Visceral fat is metabolically more active and associated with metabolic abnormalities and inflammation, and it is thus considered to be a risk factor for cardiovascular disease and mortality. On the other hand, subcutaneous fat has not been consistently linked to adverse phenomena and may reflect nutritional status as a type of energy storage. Visceral and subcutaneous adipose tissues have different metabolic and inflammatory characteristics and may have opposing influences on various outcomes, including mortality. Results showing an association between increased subcutaneous fat and better survival, along with other conditions, such as cancer or cirrhosis, in hemodialysis patients have been reported. This evidence suggests that fat mass distribution (i.e., visceral fat and subcutaneous fat) plays a more important role for these beneficial effects in hemodialysis patients.