In the present study, a crystal plasticity finite element model was developed for simulating the microstructure evolution and grain refinement during tube cyclic expansion-extrusion as a severe plastic deformation method for tubular materials. A new approach was proposed for extracting the real deformation history of a representative volume element during severe plastic deformation methods. The deformation history of a representative volume element during four cycles of tube cyclic expansion-extrusion was extracted by the proposed approach. Then, in a crystal plasticity finite element model, the deformation history was applied to a two-dimensional polycrystalline representative volume element with randomly assigned crystalline orientations. The intergranular interactions between grains and the intragranular orientation gradients were successfully simulated by the crystal plasticity finite element model. The distribution of misorientation angles, the evolution of grain boundaries, and the achieved average grain size after different cycles of tube cyclic expansion-extrusion were investigated by the crystal plasticity finite element model. On the other hand, ultrafine grained aluminum tubes were processed by four cycles of tube cyclic expansion-extrusion and the grain size of the processed tubes was studied by scanning electron microscopy observations and X-ray diffraction analyses. The experimental and predicted (by crystal plasticity finite element model) average grain sizes were compared.