Background Posterior-stabilized rotating-platform prostheses for TKAs were designed to improve contact mechanics at the femoral-polyethylene (PE) interface. Short-term followup studies have shown that the PE bearings rotate with respect to the tibia but might not necessarily track with the femur. It is important to know how kinematics in these designs change owing to longterm in vivo use.Questions/purposes We asked whether there is a significant change in the in vivo kinematic performance of a posterior-stabilized rotating-platform prosthesis at as much as 10 years postoperative. We specifically examined (1) relative femoral component-PE bearing and relative PE bearing-tibial tray motion; (2) relative AP motion of the femoral condyles with respect to the tibial tray; and (3) relative femorotibial condylar translations. Methods In vivo three-dimensional kinematics were evaluated for eight patients at 3 months, 15 months, 5 years, and 10 years after TKA with primary implantation of a posterior-stabilized rotating-platform prosthesis. Each patient performed deep knee bend activity, and threedimensional kinematics were reconstructed from multiple fluoroscopic images using a three-dimensional to twodimensional registration technique. Once complete, relative component axial rotation patterns, medial and lateral condyle motions throughout flexion, and the presence of femoral condylar lift-off were analyzed. Results Overall, tibial bearing rotation was maintained at 10 years postoperatively. There was no statistical difference between postoperative periods for any kinematic parameter except for femoral component-PE bearing axial rotation, which was reduced at the 10-year evaluation versus other assessment periods (p = 0.0006). The lack of statistical difference between postoperative evaluation