In this chapter, modern methodologies for characterization of tortuosity are thoroughly reviewed. Thereby, 3D microstructure data is considered as the most relevant basis for characterization of all three tortuosity categories, i.e., direct geometric, indirect physics-based and mixed tortuosities. The workflows for tortuosity characterization consists of the following methodological steps, which are discussed in great detail: (a) 3D imaging (X-ray tomography, FIB-SEM tomography and serial sectioning, Electron tomography and atom probe tomography), (b) qualitative image processing (3D reconstruction, filtering, segmentation) and (c) quantitative image processing (e.g., morphological analysis for determination of direct geometric tortuosity). (d) Numerical simulations are used for the estimation of effective transport properties and associated indirect physics-based tortuosities. Mixed tortuosities are determined by geometrical analysis of flow fields from numerical transport simulation. (e) Microstructure simulation by means of stochastic geometry or discrete element modeling enables the efficient creation of numerous virtual 3D microstructure models, which can be used for parametric studies of micro–macro relationships (e.g., in context with digital materials design or with digital rock physics). For each of these methodologies, the underlying principles as well as the current trends in technical evolution and associated applications are reviewed. In addition, a list with 75 software packages is presented, and the corresponding options for image processing, numerical simulation and stochastic modeling are discussed. Overall, the information provided in this chapter shall help the reader to find suitable methodologies and tools that are necessary for efficient and reliable characterization of specific tortuosity types.