1999
DOI: 10.1017/s0022112099005728
|View full text |Cite
|
Sign up to set email alerts
|

Three-dimensional large-amplitude drop oscillations: experiments and theoretical analysis

Abstract: Three-dimensional large-amplitude oscillations of a mercury drop were obtained by electrical excitation in low gravity using a drop tower. Multi-lobed (from three to six lobes) and polyhedral (including tetrahedral, hexahedral, octahedral and dodecahedral) oscillations were obtained as well as axisymmetric oscillation patterns. The relationship between the oscillation patterns and their frequencies was obtained, and it was found that polyhedral oscillations are due to the nonlinear interaction of waves.A mathe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

2
20
0

Year Published

2001
2001
2024
2024

Publication Types

Select...
8
2

Relationship

0
10

Authors

Journals

citations
Cited by 66 publications
(22 citation statements)
references
References 11 publications
2
20
0
Order By: Relevance
“…The resulting frequency shift for the second-mode oscillation was in agreement with the predictions of the theory [5] for A Ͻ 0.3. Azuma and Yoshihara [12] employed electrical excitation to obtain 3D, large amplitude oscillations of a mercury drop. A relationship between drop oscillation modes and frequencies was found.…”
Section: ͑4͒mentioning
confidence: 99%
“…The resulting frequency shift for the second-mode oscillation was in agreement with the predictions of the theory [5] for A Ͻ 0.3. Azuma and Yoshihara [12] employed electrical excitation to obtain 3D, large amplitude oscillations of a mercury drop. A relationship between drop oscillation modes and frequencies was found.…”
Section: ͑4͒mentioning
confidence: 99%
“…Several theoretical, 11,12 numerical, 13,14 and experimental 15,16 works considered nonlinear effects for finite deformations. They described several couplings between modes and showed an effect of the amplitude on the frequency of the oscillations.…”
Section: Introductionmentioning
confidence: 99%
“…The most important feature of large amplitude oscillations ( D/D > 0.1), where D is the bubble/droplet diameter and D is the variation in diameter, is the appearance of nonlinear oscillations that cause different modes of oscillations to interact (Basaran 1992;Trinh and Wang 1982;Trinh et al 1996). Energy transfer between different modes of oscillations (modes 2, 3, 4, 6) have been reported in studies considering the shape oscillation of a liquid droplet under acoustic forcing, while neglecting translational motion (Trinh et al 1998;Azuma and Yoshihara 1999).…”
Section: Introductionmentioning
confidence: 98%