The combined effects of fluid inertia and viscous forces of a Herschel-Bulkley lubricant in an externally pressurized thrust bearing with circular geometry have been analyzed theoretically. Although the researchers of the past, laid out a foundation for the hydrodynamic lubrication, modern researchers intend to use non-Newtonian fluids characterized by a yield-value, such as Bingham, Casson and Herschel-Bulkley fluids as lubricants. More over, Tribologists emphasize a fact that in order to analyze the performance of the bearings adequately, it is necessary to consider the combined effects of fluid inertia and viscous forces of non-Newtonian lubricants. Therefore, in this research article, the combined effects of fluid inertia and viscous forces have been investigated theoretically in an externally pressurized thrust bearing with circular geometry using Herschel-Bulkley fluid as lubricant. The shape and extent of the core, along the radius, have been determined numerically for various values of the Herschel-Bulkley number and the power-law index. Using the appropriate boundary conditions, the velocity distributions in the flow and the core regions have been obtained. By considering the equilibrium of an element of the core in the fluid, the modified pressure gradient has been evaluated and thereby the film pressure and the load capacity of the bearing have been obtained numerically for different values of Reynolds number, Herschel-Bulkley number and power-law index. The effects of the inertia forces and the non-Newtonian characteristics of the lubricant, on the bearing performances have also been discussed.