This paper provides a personal perspective on developments in the implementation of two systolic fast Fourier transform processors over the last 25 years and identifies some of the lessons learned. This has been a period of tremendous advancements in integrated circuit technology that is demonstrated by the resulting processors. The first processor is the Modular Transform Processor that was developed at TRW in the 1982-1984 time frame using VLSI technology. It is a set of six large circuit boards that computes 4,096-point fast Fourier transforms using 22-bit floating-point arithmetic at sustained data rates of 40 MSPS. The second processor is a single ASIC chip systolic FFT processor developed by the Mayo Foundation in the 2001-2002 time frame that computes 4,096-point FFTs using 16-bit fixed-point arithmetic at sustained data rates of 200 MSPS. Some thoughts on the future directions of systolic FFT processor development are offered. Future systems will compute large transforms (e.g., 16 K-point to 1 M-point) at high data rates (e.g., 500 MSPS to 1 GSPS), will employ more precise arithmetic (e.g., 32-bit single precision IEEE Standard floating-point arithmetic), will consume very low power (e.g., on the order of one watt) and will be realized on a single chip.