In the current paper, an optical low-cost system for 3D displacement measurement based on a single camera and 3D digital image correlation is presented. The conventional 3D-DIC set-up based on a two-synchronized-cameras system is compared with a proposed pseudo-stereo portable system that employs a mirror system integrated in a device for a straightforward application achieving a novel handle and flexible device for its use in many scenarios. The proposed optical system splits the image by the camera into two stereo images of the object. In order to validate this new approach and quantify its uncertainty compared to traditional 3D-DIC systems, solid rigid in and out-of-plane displacements experiments have been performed and analyzed. The differences between both systems have been studied employing an image decomposition technique which performs a full image comparison. Therefore, results of all field of view are compared with those using a stereoscopy system and 3D-DIC, discussing the accurate results obtained with the proposed device not having influence any distortion or aberration produced by the mirrors. Finally, the adaptability of the proposed system and its accuracy has been tested performing quasi-static and dynamic experiments using a silicon specimen under high deformation. Results have been compared and validated with those obtained from a conventional stereoscopy system showing an excellent level of agreement.