Abstract:In this work, the study of the fractional behavior of the Bateman-Feshbach-Tikochinsky and Caldirola-Kanai oscillators by using different fractional derivatives is presented. We obtained the Euler-Lagrange and the Hamiltonian formalisms in order to represent the dynamic models based on the Liouville-Caputo, Caputo-Fabrizio-Caputo and the new fractional derivative based on the Mittag-Leffler kernel with arbitrary order α. Simulation results are presented in order to show the fractional behavior of the oscillators, and the classical behavior is recovered when α is equal to 1.