A large number of experimental discoveries especially in the heavy quarkonium sector that did not at all fit to the expectations of the until then very successful quark model led to a renaissance of hadron spectroscopy. Among various explanations of the internal structure of these excitations, hadronic molecules, being analogues of light nuclei, play a unique role since for those predictions can be made with controlled uncertainty. We review experimental evidences of various candidates of hadronic molecules, and methods of identifying such structures. Nonrelativistic effective field theories are the suitable framework for studying hadronic molecules, and are discussed in both the continuum and finite volumes. Also pertinent lattice QCD results are presented. Further, we discuss the production mechanisms and decays of hadronic molecules, and comment on the reliability of certain assertions often made in the literature.