Highlights• We developed a stochastic tumour-immune dynamical model concerning pulsed treatment.• Conditions for the three phases of cancer immunoediting are provided.• The results reveal that comprehensive therapy or noise can dominate evolution of tumours.• Biological implications for cancer treatment are presented.
AbstractPeriodical applications of immunotherapy and chemotherapy play significant roles in cancer treatment and studies have shown that the evolution of tumour cells is subject to random events. In order to capture the effects of such noise we developed a stochastic tumour-immune dynamical model with pulsed treatment to describe combinations of immunotherapy with chemotherapy. By using theorems of the impulsive stochastic dynamical equation, the tumour free solution and the global positive solution of the proposed system were investigated. We then show that the expectations of the solutions are bounded. Furthermore, threshold conditions for extinction, non-persistence in the mean, weak persistence and stochastic persistence of tumour cells are provided. The results reveal that comprehensive therapy or noise can dominate the evolution of tumours. Finally, biological implications are addressed and a conclusion is presented.