Please cite this article as: M. Kereszturi, J. Tawn, Properties of extremal dependence models built on bivariate max-linearity, Journal of Multivariate Analysis (2016), http://dx.doi.org/10. 1016/j.jmva.2016.12.001 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Properties of extremal dependence models built on bivariate max-linearityMónika Kereszturi * and Jonathan Tawn STOR-i Centre for Doctoral Training, Lancaster University, UK
AbstractBivariate max-linear models provide a core building block for characterizing bivariate max-stable distributions. The limiting distribution of marginally normalized component-wise maxima of bivariate max-linear models can be dependent (asymptotically dependent) or independent (asymptotically independent). However, for modeling bivariate extremes they have weaknesses in that they are exactly max-stable with no penultimate form of convergence to asymptotic dependence, and asymptotic independence arises if and only if the bivariate max-linear model is independent. In this work we present more realistic structures for describing bivariate extremes. We show that these models are built on bivariate max-linearity but are much more general. In particular, we present models that are dependent but asymptotically independent and others that are asymptotically dependent but have penultimate forms. We characterize the limiting behavior of these models using two new different angular measures in a radial-angular representation that reveal more structure than existing measures.