The COVID-19 pandemic represents an unprecedented global challenge in this century. COVID-19 is a viral respiratory infection, yet the clinical characteristics of this infection differ in spinal cord injury patients from those observed in the general population. Cough and asthenia are the most frequent symptoms in this population. Moreover, infected spinal cord injury patients rarely present complications that require admission to an Intensive Care Unit, in contrast to the general population. Thus, there is a clear need to understand how COVID-19 affects spinal cord injury patients from a molecular perspective. Here, we employed an -omics strategy in order to identify variations in protein abundance in spinal cord injury patients with and without COVID-19. After a quantitative differential analysis using isobaric tags and mass spectrometry and a verification phase, we have found differences mainly related to coagulation and platelet activation. Our results suggest a key role of heparin in the response of spinal cord injury patients to COVID-19 infection, showing a significant correlation between these proteins and heparin dose. Although the number of patients is limited, these data may shed light on new therapeutic options to improve the management these patients and, possibly, those of the general population as well.