The feasibility of cointegration of new capacitors, named "through silicon capacitors" (TSCs) with "through silicon vias" in silicon interposers has recently been demonstrated. Two architectures of TSC are extensively investigated in this paper: "axial TSC" whose electrodes are connected on either sides of the silicon interposer and "radial TSC" with electrodes both connected to the metal layers of the back end of line. A general modeling method based on distributed cell segmentation is proposed for both architectures. Validation is performed by measurements from 1 kHz to 40 GHz (above the resonance frequency of the components). A comparative study between radial and axial architectures is performed, leading to the prediction of the performances of those new components. Finally, design rules are established for future integration for power delivery networks decoupling applications.